Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz

rođen je 1.07.1646 godine u sveučilišnom gradu Leipzigu Otac mu je bio pravnik i profesor moralne filozofije na sveučilištu, a umro je kada je dječak imao 6 godina. Leibniz tako rano ostaje bez nekoga tko bi ga usmjeravao u školovanju. Dječakov svijet postao je svijet knjiga iz kojih je vrlo rano samostalno naučio latinski i grčki, pa tek tada dobiva neograničeni pristup očevoj knjižnici. U jesen 1661. upisuje studij na Sveučilištu u Leipzigu koji je uključivao filozofiju, retoriku, matematiku, latinski, grčki i hebrejski. Nakon diplome, odlučio se za daljnji studij prava kojeg završava na Sveučilištu u Altdorfu.  Mnogo je putovao, bavio se zamisli o „univerzalnoj enciklopediji“, a kasnije i politikom. U Parizu (1672.-1676.) upoznaje mnoge poznate znanstvenike tog doba, a među njima i Christiaana Huygensa. Huygens je prepoznao genijalnost mladog Nijemca i uočio manjkavost njegovog matematičkog obrazovanja.

Pod njegovim utjecajem Leibniz jako napreduje i ostvaruje velike rezultate. Za vrijeme boravka u Parizu Leibniz usavršuje Pascalovo računalo koje je moglo samo zbrajati i oduzimati računalom koje je vršilo sve četiri osnovne operacije. Ovaj period Leibnizova života može se usporediti sa zlatnim dobom Newtona koje je proveo u Woolsthorpu. Za vrijeme svog boravka u Parizu razvio je osnovne principe i zapis svoje verzije infinitezimalnog računa. Razvijene su mnoge metode određivanja tangenata krivulja, ali još nitko nije smislio sličnu metodu za rješavanje inverznog problema, a to je određivanje jednadžbe krivulje iz jednadžbe njezine tangente. Do sredine 1673. shvatio je da je rješenje tog problema zapravo kvadratura tj. integriranje. Nastavlja putovati Europom, preko Londona i Amsterdama. Godinu dana nakon Newtona postaje članom Royal Societyja na temelju računalnog stroja kojeg je konstruirao. U tom je periodu vjerojatno vidio Newtonove rukopise (Metoda fluksija postoji od 1671. a izdana je mnogo kasnije).

Za razliku od Newtonovih rezultata pisanih dosta nejasno, Leibnizov stil pisanja mnogo je sličniji suvremenom matematičkom zapisu. Leibniz je želio stvoriti univerzalni simbolički jezik pa je puno pažnje posvetio notaciji, za razliku od Newtona kojemu je to bilo manje bitno.  Njemu zahvaljujemo uvođenje pojma transcendentnih brojeva, za izraze „diferencijalni i integralni račun“, znak  , simbol za množenje ×, te simbol za dijeljenje : (ali sada u smislu aritmetičkih operacija). Leibniz je uočio međusobnu inverznost određivanja površine i određivanja nagiba tangente. Ostatak Leibnizovog života obilježen je najvećim dijelom sukobom sa Newtonom, u kojem je branio svoj „primat“ u otkriću infinitezimalnog računa, a koji je po njega neslavno završio. Newton je Leibniza optužio za intelektualnu krađu. Kao dokaze navodio je svoja pisama Leibnizu i Leibnizova pisma Collinsu. S druge strane, Leibniz i njegovi sljedbenici tvrdili su da spomenuta korespondencija ne sadržava detalje Newtonovih rezultata, a uz to je Leibnizov račun i formalno i notacijski bitno drugačiji. Svađa oko prvenstva pretvorila se u rat između filozofskih i matematičkih koncepata koji je trajao desetljećima, čak i nakon Leibnizove smrti 1716. godine.

Leibniz je nakon godina svađe 1712. poslao službeni zahtjev Royal Societyju za utvrđivanje prvenstva. Društvo određuje odbor koji je u cijelosti podržavao tadašnjeg predsjednika Royal Societyja, Newtona. Odbor je odredio da pravo prvenstva pripada Newtonu, a izvještaj odbora objavljen je 1713. godine. Tek su 1846. godine otkriveni identiteti članova odbora, te postoji sumnja da je sam Newton napisao taj izvještaj.

Leibnizu nije bilo lako u tom periodu. Izgubio je potporu hanoverskog dvora (najvjerojatnije zbog svađe s Newtonom) i nedugo nakon toga, 14. 11. 1716., umire. Na sprovodu je bio prisutan samo njegov bivši tajnik, a jedan je Leibnizov prijatelj kasnije zapisao: „Leibniz je pokopan više kao lopov nego kao ures svoje zemlje, što je zapravo bio.“